Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Glob Chang Biol ; 30(5): e17304, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38711381

RESUMO

Subtropical forests, recognized for their intricate vertical canopy stratification, exhibit high resistance to extreme drought. However, the response of leaf phenology to drought in the species-rich understory remains poorly understood. In this study, we constructed a digital camera system, amassing over 360,000 images through a 70% throughfall exclusion experiment, to explore the drought response of understory leaf phenology. The results revealed a significant advancement in understory leaf senescence phenology under drought, with 11.75 and 15.76 days for the start and end of the leaf-falling event, respectively. Pre-season temperature primarily regulated leaf development phenology, whereas soil water dominated the variability in leaf senescence phenology. Under drought conditions, temperature sensitivities for the end of leaf emergence decreased from -13.72 to -11.06 days °C-1, with insignificance observed for the start of leaf emergence. Consequently, drought treatment shortened both the length of the growing season (15.69 days) and the peak growth season (9.80 days) for understory plants. Moreover, this study identified diverse responses among intraspecies and interspecies to drought, particularly during the leaf development phase. These findings underscore the pivotal role of water availability in shaping understory phenology patterns, especially in subtropical forests.


Assuntos
Secas , Folhas de Planta , Estações do Ano , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/fisiologia , Temperatura , Florestas , Água/metabolismo , Árvores/crescimento & desenvolvimento , Árvores/fisiologia , Solo , Clima Tropical , China
2.
Glob Chang Biol ; 30(2): e17201, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38385993

RESUMO

Globally increased nitrogen (N) to phosphorus (P) ratios (N/P) affect the structure and functioning of terrestrial ecosystems, but few studies have addressed the variation of foliar N/P over time in subtropical forests. Foliar N/P indicates N versus P limitation in terrestrial ecosystems. Quantifying long-term dynamics of foliar N/P and their potential drivers is crucial for predicting nutrient status and functioning in forest ecosystems under global change. We detected temporal trends of foliar N/P, quantitatively estimated their potential drivers and their interaction between plant types (evergreen vs. deciduous and trees vs. shrubs), using 1811 herbarium specimens of 12 widely distributed species collected during 1920-2010 across China's subtropical forests. We found significant decreases in foliar P concentrations (23.1%) and increases in foliar N/P (21.2%). Foliar N/P increased more in evergreen species (22.9%) than in deciduous species (16.9%). Changes in atmospheric CO2 concentrations ( P CO 2 $$ {\mathrm{P}}_{{\mathrm{CO}}_2} $$ ), atmospheric N deposition and mean annual temperature (MAT) dominantly contributed to the increased foliar N/P of evergreen species, while P CO 2 $$ {\mathrm{P}}_{{\mathrm{CO}}_2} $$ , MAT, and vapor pressure deficit, to that of deciduous species. Under future Shared Socioeconomic Pathway (SSP) scenarios, increasing MAT and P CO 2 $$ {\mathrm{P}}_{{\mathrm{CO}}_2} $$ would continuously increase more foliar N/P in deciduous species than in evergreen species, with more 12.9%, 17.7%, and 19.4% versus 6.1%, 7.9%, and 8.9% of magnitudes under the scenarios of SSP1-2.6, SSP3-7.0, and SSP5-8.5, respectively. The results suggest that global change has intensified and will progressively aggravate N-P imbalance, further altering community composition and ecosystem functioning of subtropical forests.


Assuntos
Ecossistema , Florestas , Nitrogênio , Fósforo , China
3.
Glob Chang Biol ; 28(18): 5441-5452, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35653265

RESUMO

Foliar stable nitrogen (N) isotopes (δ15 N) generally reflect N availability to plants and have been used to infer about changes thereof. However, previous studies of temporal trends in foliar δ15 N have ignored the influence of confounding factors, leading to uncertainties on its indication to N availability. In this study, we measured foliar δ15 N of 1811 herbarium specimens from 12 plant species collected in southern China forests from 1920 to 2010. We explored how changes in atmospheric CO2 , N deposition and global warming have affected foliar δ15 N and N concentrations ([N]) and identified whether N availability decreased in southern China. Across all species, foliar δ15 N significantly decreased by 0.82‰ over the study period. However, foliar [N] did not decrease significantly, implying N homeostasis in forest trees in the region. The spatiotemporal patterns of foliar δ15 N were explained by mean annual temperature (MAT), atmospheric CO2 ( P CO 2 ), atmospheric N deposition, and foliar [N]. The spatiotemporal trends of foliar [N] were explained by MAT, temperature seasonality, P CO 2 , and N deposition. N deposition within the rates from 5.3 to 12.6 kg N ha-1  year-1 substantially contributed to the temporal decline in foliar δ15 N. The decline in foliar δ15 N was not accompanied by changes in foliar [N] and therefore does not necessarily reflect a decline in N availability. This is important to understand changes in N availability, which is essential to validate and parameterize biogeochemical cycles of N.


Assuntos
Dióxido de Carbono , Folhas de Planta , China , Nitrogênio/análise , Isótopos de Nitrogênio/análise , Folhas de Planta/química , Plantas , Árvores
4.
Ecol Evol ; 11(15): 10277-10289, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34367574

RESUMO

Estimation of leaf nutrient composition of dominant plant species from contrasting habitats (i.e., karst and nonkarst forests) provides an opportunity to understand how plants are adapted to karst habitats from the perspective of leaf traits. Here, we measured leaf traits-specific leaf area (SLA), concentrations of total carbon ([TC]), nitrogen ([TN]), phosphorus ([TP]), calcium ([Ca]), magnesium ([Mg]), manganese ([Mn]), minerals ([Min]), soluble sugars, soluble phenolics, lipids, and organic acids ([OA])-and calculated water-use efficiency (WUE), construction costs (CC), and N/P ratios, and searched for correlations between these traits of 18 abundant plant species in karst and nonkarst forests in southwestern China. Variation in leaf traits within and across the abundant species was both divergent and convergent. Leaf [TC], [Ca], [Min], [OA], and CC were habitat-dependent, while the others were not habitat- but species-specific. The correlations among [TN], [TP], SLA, [TC], CC, [Min], WUE, [OA], and CC were habitat-independent, and inherently associated with plant growth and carbon allocation; those between [CC] and [Lip], between [Ca] and [Mg], and between [Mg] and [WUE] were habitat-dependent. Habitat significantly affected leaf [Ca] and thus indirectly affected leaf [OA], [Min], and CC. Our results indicate that plants may regulate leaf [Ca] to moderate levels via adjusting leaf [OA] under both high and low soil Ca availability, and offer new insights into the abundance of common plant species in contrasting habitats.

5.
Glob Chang Biol ; 27(12): 2780-2792, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33742519

RESUMO

China is experiencing a high level of atmospheric nitrogen (N) deposition, which greatly affects the soil carbon (C) dynamics in terrestrial ecosystems. Soil aggregation contributes to the stability of soil structure and to soil C sequestration. Although many studies have reported the effects of N enrichment on bulk soil C dynamics, the underlying mechanisms explaining how soil aggregates respond to N enrichment remain unclear. Here, we used a meta-analysis of data from 76N manipulation experiments in terrestrial ecosystems in China to assess the effects of N enrichment on soil aggregation and its sequestration of C. On average, N enrichment significantly increased the mean weight diameter of soil aggregates by 10%. The proportion of macroaggregates and silt-clay fraction were significantly increased (6%) and decreased (9%) by N enrichment, respectively. A greater response of macroaggregate C (+15%) than of bulk soil C (+5%) to N enrichment was detected across all ecosystems. However, N enrichment had minor effects on microaggregate C and silt-clay C. The magnitude of N enrichment effect on soil aggregation varied with ecosystem type and fertilization regime. Additionally, soil pH declined consistently and was correlated with soil aggregate C. Overall, our meta-analysis suggests that N enrichment promotes particulate organic C accumulation via increasing macroaggregate C and acidifying soils. In contrast, increases in soil aggregation could inhibit microbially mediated breakdown of soil organic matter, causing minimal change in mineral-associated organic C. Our findings highlight that atmospheric N deposition may enhance the formation of soil aggregates and their sequestration of C in terrestrial ecosystems in China.


Assuntos
Carbono , Solo , Carbono/análise , China , Ecossistema , Nitrogênio/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...